Computational Physics and Methods

A
> L/ojs Alamos

NATIONAL LABORATORY
EST.1943

Improved Monte Carlo
modeling of radiation
transport through
stochastic media

K.P. Keady, keadyk@lanl.gov
M.A. Cleveland, cleveland@lanl.gov

Radiation propagation through stochastic ma-
terial is an active topic in transport methods re-
search. By definition, stochastic materials can
be characterized only probabilistically, and range
from uniform random mixtures (such as concrete)
to mixtures with complicated clustering behavior
(such as clouds) [1]. Modeling these mixtures
accurately and efficiently presents a unique chal-
lenge for radiation transport codes.

To address this challenge, we are developing a
path-length-sampling (PLS) method specifically
designed for transport through stochastic mix-
tures. The PLS method uses an initial infinite-
medium calculation to capture stochastic material
effects in the form of tabular PDFs, which are
then directly sampled during an Implicit Monte
Carlo (IMC) simulation. To date, we have imple-
mented a preliminary version of the PLS method
in the Branson IMC mini-app [2]. Initial results
demonstrate that the PLS method can accurately
capture the effect of material interface refraction
in a uniform random medium.

Background and Motivation

The vast majority of existing research on trans-
port through stochastic material considers only
two-material mixtures, with code implementa-
tions generally limited to a single geometry [3].
While these specialized applications are very
valuable from a research perspective, it is not fea-
sible to implement each of these geometries in a
general-purpose radiation transport code.

Consequently, there is a need for methods
that accurately simulate particle transport through
stochastic media, while requiring minimal modi-
fications to existing transport codes. We believe

that the PLS method is well-suited to meet these
requirements.

Description

To generate path-length distributions for use in
IMC simulations, we run a steady-state infinite-
medium calculation for the stochastic material of
interest. Depending on the properties of the ma-
terial mixture, this calculation can be done us-
ing chord-length sampling, ensemble-averaging
of multiple realizations, or other microphysics
models.

The output of this material characterization
step consists of tabular PDFs for particle path-
length and scattering angle. If the material is non-
uniform in space, these PDFs can be calculated on
a specified sub-cell grid in space and angle.

Figure 1 shows an example cell filled with a
non-uniform mixture of two materials (highly-
absorbing “clusters” of purple spheres in an
optically-thin white background). In Figure 2,
we map sub-cell mean free path estimates for this
material mix (listed in centimeters, and generated
using our material characterization code). The
“mean free path” represents the average distance
a particle travels between collisions with the ma-
terial. The colored values in Figure 2 highlight
significant variations in the mean free path, which
result from the underlying stochasticity of the ma-
terial.

If we were to treat this cell using the common
atomic mix model (i.e. volume-averaging the ma-
terial opacities), the mean free path would be (i)
constant throughout the cell, and (ii) less than a
centimeter. Both of these statements are clearly
at odds with the data presented in Figure 2; thus,
the atomic mix approximation is highly inaccu-
rate for this material cell.

Anticipated Impact

Radiation transport through stochastic material
occurs in a number of scenarios of interest to the
lab, including climate modeling of atmospheric
clouds, ICF capsule experiments, and certain tur-
bulent flows. However, current radiation trans-
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Figure 1: Top view of “clustered” material mix

port capabilities are incapable of capturing sub-
cell variations in material opacity, which can pro-
duce unphysical solutions in portions of the prob-
lem domain. Implementing an improved stochas-
tic material treatment will lead to more accurate
radiation transport solutions in problems with sig-
nificant sub-cell material heterogeneity.

Path Forward

Once we have completed research work in the
Branson mini-app, the PLS method should be
straightforward to implement in CCS-2’s Jayenne
project software. Porting the PLS implementa-
tion to Jayenne will allow us to examine the per-
formance of the method for coupled radiation-
hydrodynamics simulations.
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Figure 2: Sub-cell mean free path estimates
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